Abstract
Criminal law enforcement depends on the actions of public agents such as police officers, but the resulting agency problems have been neglected in the law and economics literature (especially outside the specific context of corruption). We develop an agency model of police behavior that emphasizes intrinsic motivation and self-selection. Drawing on experimental evidence on punishment preferences, in which subjects reveal a heterogeneous preference for punishing wrongdoers, our model identifies circumstances in which “punitive” individuals (with stronger-than-average punishment preferences) will self-select into law enforcement jobs that offer the opportunity to punish (or facilitate the punishment of) wrongdoers. Such “punitive” agents will accept a lower salary, but create agency costs associated with their excessive zeal (relative to the public’s preferences) in searching, seizing, and punishing suspects. In our framework, the public chooses (under reasonable assumptions) to hire punitive police agents, while providing suspects with strong criminal procedure protections, thereby empowering other agents (such as the judiciary) with average punishment preferences to limit the agency costs of excessive zeal. We thus argue that intrinsic motivation and self-selection provide a possible explanation for the bifurcated structure of criminal law enforcement in which courts constrain police with pro-defendant rules of criminal procedure. We also explore various other implications of this framework.
“Don’t you love catching someone trying to get away with something? I love it. But that’s why I could never be a cop because I would be too happy. I would catch somebody speeding and go ‘I got you, I got you . . . ’ Really obnoxious”

“Quis custodiet ipsos custodes?”

Juvenal, 1st/2nd century

1) Introduction

In a classic account of corporate law, Easterbrook and Fischel (1991, p. 14) state that “To understand corporate law you must understand how the balance of advantage among devices for controlling agency costs differs across firms and shifts from time to time.” Broadly speaking, the same is true of criminal law. Criminal law enforcement depends on the actions of police officers, prosecutors, and others who act as agents of governments and ultimately as agents of the public. As principal-agent theory predicts, law enforcement agents may have objectives that differ from those of their principals. Yet, economic analysis of criminal law and procedure has paid relatively little attention to the principal-agent problem in law enforcement. Since Becker (1968), the dominant issue in the economics of crime has not been agency costs but optimal probability and severity of punishment in order to achieve efficient deterrence. Recent reviews of the economics literature on public law enforcement (e.g., Polinsky and Shavell, 2009) describe exhaustive treatment of optimal deterrence, but scant attention to the principal-agent problem. Not much has changed since Friedman (1999) noted that “[t]he orthodox theory of optimal punishment . . . treats criminals . . . as rational self-interested actors,” but “treats the enforcement apparatus – police, courts, prosecutors, and legislature – as a philosopher-king, with imperfect information but only the best of motives.”

There are a few exceptions. Agency costs are mentioned where the potential criminal is a collective entity, such as a corporation, that consists of principals and agents. This literature thus considers the agency problem for the targets of criminal punishment, but not for the creators and enforcers of criminal law – legislators, police, prosecutors, chief executives, and others. There is a robust and important literature on corruption, which includes corruption of public enforcers. However, as we explain, corruption is only one aspect of agency, quite distinct from the issues of intrinsic motivation and self-selection that we highlight. On the more general agency problem in
criminal law, there are only a handful of economic articles (e.g. Friedman, 1999; Hylton and Khanna 2007); these stress issues of rent seeking that are distinct from the concerns of this paper.

This paper seeks to characterize the fundamental contours of the agency relationship between key law enforcement agents – police officers – and the general public, and to derive some implications for understanding the role of criminal procedure protections. We take as a premise that this particular agency problem cannot be solved through performance-based contracting, but will involve low powered incentives. As discussed in the previous literature (e.g. McAdams, 2012), a fundamental reason is the danger of fabrication – that if law enforcers were paid by the arrest or conviction, they would “frame” individuals to collect their fee (an example of the classical gaming effect by which the agent manipulates the performance measure set by the principal). Another related problem would be an additional effort on the activities targeted by performance measures (for example, arrest or conviction) at the expense of the activities excluded from those performance measures (for example, verification of guilt).

Our distinctive approach draws on experimental evidence on “altruistic punishment,” in which some (but not all) subjects willingly incur a cost to punish wrongdoers. We posit heterogeneity in the “punishment preferences” of potential agents and argue that these differences cause agents with unrepresentative preferences to self-select into law enforcement jobs that offer the opportunity to punish wrongdoers or at least to facilitate their punishment by prison authorities. This tends to create a divergence of interest between principal and agent: specifically, punitive agents will operate with a lower threshold of doubt for punishing suspects than would a citizen with average preferences for punishment. Thus, in contrast to the problem of shirking – as extensively studied in the context of corporate law and governance – the agency problem here is likely to include the problem of excessive zeal.

We develop a simple sequential game-theoretic model to formalize and clarify this idea. In this model, a representative citizen (the principal) offers a fixed wage contract to police. There are two types of potential applicants – “punitive” individuals (with stronger-than-average punishment preferences), and individuals with punishment preferences similar to those of the principal; each

1 There is a growing literature on prosecutors (e.g., Garoupa 2009; Gordon and Huber, 2009; Rasmusen, Raghav and Ramseyer 2009; Ribstein 2011), but aside from the work on corruption there is a particular neglect of our focus, police officers. Note also that while the law and economics literature has tended to ignore agency costs of criminal law enforcement, scholarship on criminal law has sometimes used agency concepts with regard to prosecution and policing (e.g. Bibas, 2009; Richman 2003; Stuntz 2001, pp. 549-550, Stuntz 2008, p. 1974). However, this literature has not developed formal principal-agent models of law enforcement.
of these types decides whether to apply to join the police, in response to the wage contract that is offered. The (endogenously-selected) police then decide which suspects to arrest, based on their observed probability of guilt. We first present a model in which suspects have only weak criminal procedure protections, and in which all those arrested are punished. There are two equilibrium outcomes, depending on the underlying values of various parameters (although the equilibrium outcome is unique for a given set of parameter values). One outcome involves self-selection - only punitive types apply, the wage is relatively low, and there is a divergence in preferences between the citizen and the police as to the probability threshold above which suspects should be arrested and punished. The other outcome involves a higher wage, which attracts both punitive and nonpunitive types to apply. The agency costs of excessive zeal are mitigated, but the citizen incurs a higher wage cost.

We then modify this framework to introduce strong criminal procedure protections for suspects. In particular, a court (which for various reasons discussed below is assumed to share the principal’s preferences) determines which of the arrested suspects will be punished. The equilibrium outcome here involves self-selection, where only punitive types apply. The wage is higher than in the prior self-selection equilibrium because strong criminal procedure protections limit punishment opportunities, but the job remains more attractive to punitive than to nonpunitive types as long as punishment opportunities continue to exist. Now, however, the court limits the agency costs of excessive zeal, thereby reducing the extent to which the principal’s payoff is reduced by the excessive punishment of suspects.

Finally, we characterize the conditions under which the citizen is better off with strong rather than weak criminal procedure protections for suspects. Our conclusion is that the citizen-principal may benefit by seeking to control punitive police by using other agents – mostly, judges and juries – who have preferences closer to those of the public. Thus, criminal procedure protections of suspects can reduce agency costs between the general public and police; they enable the public to benefit to some degree from the lower cost of employing intrinsically-motivated police, while avoiding the worst excesses of over-enforcement by these agents.²

² A possible objection to this approach is that criminal procedure protections for suspects tend to be unpopular with elements of the general public. While this is true, our argument requires only that on average police officers tend to be more hostile to criminal procedure protections than does the average citizen. Ethnographic accounts of policing (e.g. Skolnick, 1966; Manning and van Maanen, 1978) provide considerable support for this notion.
Our framework potentially derives the basic structure of the criminal justice system – the separation of judicial and executive enforcement powers, and the judiciary’s pro-defendant rules of criminal procedure – from the agency problem in law enforcement. We also make some progress in explaining aspects of the compensation of law enforcement agents: society relies on low powered incentives (wages and salary) rather than high powered incentives (bounties) not only because of the risk of fabrication (and possible verifiability constraints), but also because society manages to attract into policing those who are intrinsically motivated to perform the job, thus rendering external incentives less necessary. Internal incentives makes the trade-off between low and high powered incentives more likely to favor low powered incentives. While our model does not explicitly allow for a choice of effort, we argue that a straightforward extension would show that intrinsically motivated police would be less likely to shirk and to take bribes from guilty suspects because they cannot satisfy their punishment preferences without working and arresting the guilty. In a related paper (McAdams, Dharmapala, and Garoupa, 2015), we develop some implications of our framework for understanding doctrinal distinctions between police and nonpolice government actors that have been drawn in US Fourth Amendment jurisprudence.

Our paper proceeds as follows. Section 2 reviews the literature. Section 3 develops and solves the formal model. Section 4 discusses the implications, and Section 5 concludes.

2) Literature Review

The principal-agent problem is the subject of a vast literature. A relevant subliterature considers situations in which a principal delegates decisionmaking authority to an agent who may have different preferences. In such circumstances, the principal must decide how much to intervene ex post to supervise the agent (a choice analogous to the strength of criminal procedure protections in our model). An influential contribution in this literature is Aghion and Tirole (1997). In their model, providing agents with greater authority can induce them to exert greater effort and to acquire and communicate more information, thereby potentially benefiting the principal even in the presence of divergent preferences. Our model falls within this broad tradition. However, it abstracts from the choice of effort by the agent and from the agent’s choice of how much information to acquire, in order to focus on issues of intrinsic motivation and self-selection.

Our paper is thus also related to the literature that introduces intrinsically-motivated agents into the principal-agent framework (e.g. Besley and Ghatak, 2005; Prendergast, 2007). Some
papers in this literature emphasize the benefits to principals from harnessing the intrinsic motivation of agents (e.g. Kalt and Zupan, 1990; Prendergast, 2009). Others highlight the potential costs (e.g. Gailmard and Patty, 2007). In our framework (as in Gilligan and Krehbiel (1987), Warren (2012) and Bubb and Warren (2014), albeit in quite different contexts), there are both costs and benefits from the principal’s perspective. For instance, Gilligan and Krehbiel (1987) explain that when a legislature cedes decisionmaking authority to committees, it encourages greater effort by the latter in policymaking, which can make the legislature better off, even when the committee has unrepresentative preferences over policy. Bubb and Warren (2014) develop a model in which the President appoints ideologically-motivated officials to regulatory agencies to mitigate the problem of shirking, while also using centralized regulatory review to constrain these officials. Generally, these models focus on a tradeoff between agents’ bias and their effort (formally, intrinsic motivation eases the incentive-compatibility constraint). In our framework, we assume the intrinsic motivation of police officers is unverifiable to the principal, but has systematic effects through the mechanism of self-selection. Thus, the tradeoff operates through the participation constraint. Moreover, this literature has not previously focused on police officers or on understanding the implications of intrinsic motivation for criminal procedure.

A large economic literature analyzes corruption (e.g. Becker and Stigler, 1974; Shleifer and Vishny, 1993; Mookherjee and Png, 1995; Bowles and Garoupa, 1997; Rose-Ackerman, 1999; Polinsky and Shavell, 2001; Echazu and Garoupa, 2010). This literature addresses situations in which an agent departs from some notion of optimal punishment, in the direction of less than optimal punishment, in exchange for a bribe from the offender. While there exist some similarities between this situation and ours in terms of a divergence between the principal’s and agent’s preferences, there are also important differences. In particular, corrupt law enforcers are assumed to respond to extrinsic motivations (primarily monetary payments from offenders), whereas we assume intrinsically-motivated agents. The agency costs of excessive zeal that arise as a result of intrinsic motivation and self-selection are quite different in nature from agency costs of corruption, as discussed in Sections 3 and 4 below.

The past contributions to the economic analysis of criminal procedure that are closest to ours are Friedman (1999) and Hylton and Khanna (2007). Friedman (1999) focuses on the problem of rent-seeking, i.e. that criminal enforcers will use their expansive powers to “expropriate other people.” Friedman seeks to explain the otherwise economically puzzling choice of prisons as the
primary mode of punishment, given their greater expense compared to the death penalty. Friedman’s answer to this puzzle is that inefficient punishments are less susceptible to abuse. First, the weaker the punishment, the less wealth the enforcer can extract by threatening to impose the punishment. Second, the more costly the punishment to the state, the less credible is the threat to inflict the punishment if the bribe is not paid. Hylton and Khanna (2007) is motivated by a very similar question to ours, namely how to explain the apparent pro-defendant bias of criminal procedure. Like Friedman (1999), they argue that criminal procedure protections ameliorate the extraction problem. Procedural protections make it more costly to convict the innocent than to convict the guilty, thus reducing the ability of agents to credibly threaten innocent suspects with false arrest, conviction, and punishment.

Friedman (1999) and Hylton and Khanna (2007) offer important insights, but they model enforcers as being conventionally self-interested. Our primary objection is thus that this literature addresses one set of puzzles – why do we limit the infliction and intensity of criminal punishments? – by exacerbating another puzzle – how do we induce police to work? For instance, although procedural protections make it relatively more costly to convict the innocent than the guilty, they still make it absolutely more costly to convict the guilty. If enforcers lack intrinsic motivation and external incentives are low-powered, then there is a painful tradeoff: making enforcement cheap imperils the innocent, but making enforcement costly benefits the guilty. The net result is indeterminate and not a clear justification for the procedural rights.

Note, however, that limiting the use of the death penalty may do little to prevent law enforcers from extracting rents from the innocent given that most people would give all of their wealth to avoid a prison term of life or a substantial part of their life. Moreover, the officer who would extract a payment by threatening to frame an innocent person is not the one who bears the expense of incarcerating that individual. Thus, the expense of prison does not deter the individual officer from demanding bribes (unless the individual officer fully internalizes society’s costs of imprisonment, in which case there are no agency problems and hence no issue of rent extraction).

Hylton and Khanna (2007) specifically offer the bar on double jeopardy and ex post facto laws, the right to a jury trial, and the vagueness doctrine as examples of rules that render it more difficult to extract rents from the innocent. A possible objection is that if criminal procedure rights are necessary only to prevent law enforcers from extracting bribes from the innocent, then such rights are necessary only for those who possess resources to extract; thus, the indigent should receive no criminal procedure rights.

Related to shirking is a different type of corruption from the one that Hylton and Khanna (2007) model - the guilty offering bribes to the police to abstain from enforcement. It is not clear why self-interested enforcers would ever bother to punish the guilty if they could take bribes instead. Even though procedural protections will decrease the extraction of bribes from the innocent, they will increase the number of the guilty who escape punishment via bribery. First, procedural protections involve giving other enforcement agents veto power over punishment, which creates new bribery opportunities. Second, procedural protections decrease the probability of being convicted for the crime of bribery, thus increasing the productivity of that activity. With procedural protections, the guilty will be more willing to offer a bribe to enforcers and the enforcers will be more willing to take the bribe.
that it is possible to mitigate this tradeoff by making use of the intrinsic motivation of those who choose to join the police.

In constructing a theory of intrinsic motivation among police, this paper draws on the experimental literature on punishment. Our model assumes that individuals have heterogeneous preferences for punishing wrongdoers, deriving utility directly from facilitating (i.e. causally contributing to) the punishment of wrongdoers (without that punishment producing further consequences). This assumption, of course, deviates from the simple and standard assumption that actors care only about ordinary consumption goods. There is already a literature analyzing the consequences of intrinsic motivation in the principal-agent framework (e.g. Besley and Ghatak, 2005; Prendergast, 2007). However, even if one were skeptical about intrinsic motivation generally, our specific assumption about punishment preferences is grounded on an extensive body of experimental evidence that establishes that humans have a heterogeneous willingness to incur costs to punish those perceived as wrongdoers (e.g. Fehr and Gächter, 2000). Particularly noteworthy for our purposes is heterogeneity in the willingness of subjects to lower their own payoff in order to reduce the payoffs of free riders in public goods games (e.g., Anderson and Putterman 2006, pp. 13-15; Carpenter 2007, pp. 532-33; Henrich et al., 2006 (Tables 1 and 2)).

Subsequent studies have extended the basic finding in a number of directions, for instance finding punishment of wrongs done to others rather than to oneself (Fehr and Fischbacher, 2004); finding an intrinsic willingness to punish across a wide variety of cultures (Henrich et al., 2006); and developing evolutionary models that explain how the preference for punishment could arise (see Henrich et al. (2006, notes 3-10) for citations). Particularly important for our purposes is an experiment that distinguishes between a taste for punishment of the guilty and a taste for “justice” (i.e. for both punishing the guilty and exonerating or refraining from punishing the innocent). Grechenig, Nicklisch and Thöni (2010) provide potential punishers with only a noisy signal regarding whether other subjects defected or cooperated. If the taste for punishment were in reality a taste for justice, then we would expect that this uncertainty would cause a significant decline in punishment in order to avoid the punishment of possibly innocent subjects. However, Grechenig, Nicklisch and Thöni (2010) find that there is no decline in punishment as a result of uncertainty. This suggests that the taste for punishing wrongdoers is not (at least fully) offset by a corresponding taste for the nonpunishment of the innocent.
The most directly relevant evidence for our purposes come from two recent studies that use police officers and police applicants as subjects. Dickinson, Masclet and Villeval (2014) use a subject pool that includes 87 French police commissioners (or individuals who had recently passed the competitive national exam and were on their way to becoming commissioners) as well as nonpolice (primarily student) subjects. They find that the police subjects are willing to incur greater costs to impose punishment in standard experimental games where punishment is costly and without strategic benefit. These results could be attributable either to self-selection into policing or to the effect of police training. Friebel, Kosfeld and Thielmann (2014) address this concern by using as their “police” subjects high school students in the German länder of Hesse and Rheinland-Pfalz who have applied to join the police forces, but have experienced no police training. Compared to nonapplicant high school students, the police applicants are willing to incur greater costs to punish, suggesting that self-selection plays a major role in the punitive preferences of police.

It is important to bear in mind that the experiments reviewed above are not specifically designed to replicate the context of criminal law enforcement; they do not involve serious criminal wrongdoing or punishment. Nonetheless, the experimental evidence is consistent with the existence of a taste for the punishment of wrongdoers that varies considerably across individuals. The taste for punishment is not confined to those who harm the punisher directly, but extends to wrongdoers in general. Because punishment occurs in these experiments even when the design entails that punishment is subject to a free rider problem, the utility from punishment seems to result from causing or facilitating the punishment, and not merely from the knowledge that punishment occurs. Finally, the taste for punishing wrongdoers appears not to be fully offset by a corresponding taste for the nonpunishment of the innocent (i.e. the taste for punishment cannot be interpreted simply as a taste for “justice”).

We acknowledge that the existence of a heterogeneous taste for punishment is only one possible interpretation of these experimental results. It is possible that individuals have uniform tastes for punishment, while the (altruistic or ideological) willingness to incur costs of punishment varies across the population. However, a few experimental studies vary the cost of punishment, including scenarios in which punishment is costless, and still find heterogeneity in punishment (e.g. Anderson and Putterman, 2006, p. 8). De Quervain et al. (2004) study neural images of subjects undergoing a punishment experiment and find that, even when punishment is costless,
there is variation in the degree of reward center brain activation among punishers, which also predicts the willingness to incur costs to punish when punishment is costly. Moreover, ethnographic accounts of policing (e.g. Skolnick, 1966; Manning and van Maanen, 1978) document the hostility of many police officers to procedural rules imposed on them by the public, and strongly suggest that there is a divergence in preferences (rather than merely in the willingness to incur costs) between the police and the public.

3) The Model

We present our model in four steps. We first show how different punishment preferences imply different preferences for the threshold of doubt, meaning the probability of guilt necessary for an individual to prefer a suspect’s search, arrest, and punishment. Second, we specify and solve a simple sequential game of the police hiring and law enforcement process with weak criminal procedure protections (CPP) for suspects. We then modify this model to incorporate strong CPP and solve this model. Finally, we characterize the circumstances in which citizens will prefer strong to weak CPP.

3.1) The Characterization of Preferences over Punishment

We begin by showing that, if law enforcement agents have punishment preferences that differ from the average citizen’s punishment preferences, the agents will favor a different threshold of doubt for search, seizure and punishment than would a typical citizen. Let \(p \) be the probability that a given suspect is guilty, and let \(u_C \) be the utility of the representative citizen (or principal). Her preferences (also shown in Table 1) can be represented as follows:

\[
\begin{align*}
 u_C &= 0 \text{ if the suspect is guilty and punished, or if the suspect is innocent and not punished;} \\
 u_C &= -L \text{ if the suspect is guilty and not punished} \\
 u_C &= -\beta L \text{ if the suspect is innocent and punished.}
\end{align*}
\]

The citizen’s utility is thus normalized to zero when the punishment decision is correct. Relative to this baseline of zero, utility is lower when a guilty suspect is not punished \((-L)\) and when an innocent suspect is punished \((-\beta L)\). This is a general characterization of the principal’s preferences that is widely used in the scholarly literature (e.g. Dharmapala and McAdams, 2003). The parameter \(\beta > 0 \) represents the relative cost of punishment errors that involve punishing the
innocent, relative to errors that involve nonpunishment of the guilty.6 The parameter $L > 0$ is defined as the utility loss from an enforcement error relative to the utility loss from losing 1 of money. This normalization facilitates the analysis of situations in which the citizen or other agents trade off the nonpecuniary utility defined above against pecuniary outcomes such as wages, without introducing additional notation.

The decision to punish will generally be made under conditions of uncertainty about guilt. Thus, the citizen will wish to punish whenever the expected utility from punishment exceeds the expected utility from nonpunishment. Given a suspect with probability p of guilt, the expected utility from punishment is $-(1-p)\beta L$ while the expected utility from nonpunishment is $-pL$. Thus, the citizen wishes to punish suspects iff:

$$p > \frac{\beta}{\beta+1} \equiv p^* \tag{1}$$

where the relative magnitude of the parameter β determines the threshold p^*.7

The truth-seeking preferences (u_C) characterized above represent the utility derived from enforcement accuracy. It is experienced by all individuals as a public good, as it arises simply from knowing that suspects with p above the threshold are punished (and that suspects with p below the threshold are not punished). It does not depend on personally causing or facilitating this punishment. On the other hand, the most natural interpretation of the experimental evidence reviewed in Section 3 above is that there exists a significant element of the population that has a taste for the punishment of wrongdoers – i.e. that derives utility from personally causing or facilitating the punishment of the guilty. This type of punishment utility can be added to the model by modifying the preferences above as follows (as represented in Table 2):

$$u_M = mL \text{ if the suspect is guilty and punished}$$

with $u_M = u_C$ (as defined above) in the other scenarios; $m > 0$ is a parameter that represents the intensity of the taste for punishment of the guilty (relative to the loss L from erroneous punishment).

6 The citizen’s preferences might conform to Blackstone’s (1765-69) famous dictum that “... it is better that ten guilty persons escape, than that one innocent suffer” - i.e. that β would substantially exceed 1. However, our results do not require this assumption, and so we do not impose it here. See Volokh (1997).

7 For instance, if punishing the innocent is very costly compared to not punishing the guilty (i.e. β is substantially larger than 1), p^* will be close to 1. As β approaches infinity, p^* approaches 1. If $\beta = 1$ (so that wrongful punishment and wrongful nonpunishment are equally costly), then $p^* = \frac{1}{2}$. If β approaches zero, p^* approaches 0.\n
As the punishment utility m represents additional utility derived by a punitive type from personally causing or facilitating the punishment of suspects, it is assumed to be a private good that is contingent on serving in a law enforcement capacity. A punitive police officer would experience punishment utility even if (counterfactually) any other police officer in the same position would also have arrested the same suspect in the same circumstances.\(^8\) It follows (when we model the decision to apply to the police force below) that the incremental gain in utility from joining the police is only the punishment utility – the utility from enforcement accuracy is experienced whether or not an individual joins the police.

Given the assumptions in Table 2, a punitive agent wishes to punish suspects iff:

$$p > \frac{\beta}{m + \beta + 1} \equiv p^m \quad (2)$$

It follows from Equations (1) and (2) that:

Remark 1:
1) $m > 0$ implies that $p^m < p^*$
2) p^m is decreasing in m

Thus, whenever agents are punitive ($m > 0$) there will exist a divergence between the preferences of agents and those of the average citizen. Moreover, this divergence will be greater the more punitive are the agents (i.e. the larger is m). In the analysis that follows, we focus for concreteness on this divergence in preferences (i.e. that punitive agents wish to punish suspects with a lower threshold of doubt) as a source of agency costs in law enforcement. However, a richer framework could (without fundamentally changing our results) incorporate additional forms of divergence in preference – for instance, punitive agents may have a greater taste for authoritarianism or violence.

Arguably, a more general characterization of the preferences of potential agents would allow for utility to be positive in the scenario where the suspect is innocent and not punished (as well as that in which the suspect is guilty and punished).\(^9\) This would reflect utility derived from causing or facilitating the nonpunishment of the innocent, and may be termed a “pro-exoneration” preference. A combination of both punitive and pro-exoneration preferences may be termed “pro-justice” preferences (i.e. more intense preferences for both the punishment of the guilty and the

\(^8\) This assumption can be grounded in a growing body of experimental evidence that suggests that people feel more responsible for actions than for inactions and tend to attribute responsibility to the person who makes the relevant affirmative decision, even if others would have acted similarly (see e.g. Arlen and Tontrup (2014)).

\(^9\) Formally, this would entail that $u_M = nL$ if the suspect is innocent and not punished, where $n > 0$.
nonpunishment of the innocent, relative to the average citizen). If potential agents have pro-justice preferences, then the divergence characterized in Remark 1 between the preferred thresholds of doubt for punishment of these agents and the average citizen may not hold (and may even be reversed, depending on the relative strength of punitive and pro-justice preferences).

While conceding this theoretical possibility, we focus in our analysis on agents with punitive preferences, based on both experimental evidence and some general conceptual considerations. First, the experimental data supports the existence of punitive preferences, but we have not discovered similar evidence of exonerative preferences. To the contrary, the available evidence, though scant, suggests that pro-justice preferences are not particularly common or intense. Even if strong pro-exoneration or pro-justice preferences exist, there is no evidence of their heterogeneity. Second, causing the punishment of the guilty and causing the nonpunishment of the innocent are unlikely to be symmetric in the law enforcement context. In particular, it seems untenable that refraining from punishing innocent individuals, by itself, can produce utility.

We do, however, recognize that a limited exception exists whenever an innocent suspect is exonerated—i.e. where, at time 1, the perceived probability p of a suspect’s guilt is high enough to make his punishment seem plausible and then, at time 2, someone produces evidence that the probability is far lower, eliminating the chance of punishment. However, by its very nature, the job of law enforcement offers many more opportunities for causing punishment than causing exoneration. Another reason for doubting the importance of pro-justice or pro-exoneration

10 As discussed in Section 2 above, Grechenig, Nicklisch and Thöni (2010) find that introducing uncertainty about whether individuals are guilty does not reduce the propensity of other experimental subjects to punish them. If preferences were pro-justice, rather than merely punitive, we would expect a significant decline in punishment in order to avoid possible punishment of the innocent.

11 The problem is that, except for the one or few individuals guilty of a crime, the entire population is innocent. And most of these innocent individuals face no risk of being wrongfully punished, though a law enforcement agent with the power to punish can cause their nonpunishment by choosing to refrain from taking action against them. Thus, while we regard as plausible a function in which individuals lose utility from causing the punishment of the innocent, it seems implausible to posit that individuals gain utility from not punishing any innocent person. That a police officer would gain utility from not arresting an individual who appears perfectly blameless strikes us as similar to positing that a person gains utility each time he does not strike any individual in his presence (or, for that matter, that he does not hit himself in the head).

12 A law enforcement officer frequently encounters the opportunity to make an arrest, to gather evidence that might lead others to make an arrest or to convict, or to inflict informal punishment through the process of stopping, searching, and arresting (including the use of unlawful excessive force). Punishment facilitation is a standard part of the job. An officer has only a relatively rare occasion to liberate or prevent the detention of an individual who at an earlier point appears guilty but who, after investigation, is apparently not. One reason for this rarity is that, outside of detective fiction, the person who first appears to be guilty usually is. So once an individual’s p reaches a point where he is a serious suspect, further investigation usually fails to find evidence that exonerates the suspect. More generally, most
preferences within the police arises from the presence of promotion incentives. While these incentives are low-powered, it is nonetheless likely to be true that officers with better records at closing cases are more likely to receive promotions. Those who spend a lot of time seeking to exonerate suspects will end up with worse-looking records and be less likely to receive promotion. This factor may make policing less attractive to pro-justice types, or make them less likely to persist in a police career.13

To characterize more precisely the citizen’s utility from enforcement accuracy, suppose that the police follow a rule of punishing suspects iff $p > p^*$; then, the citizen’s utility from enforcement accuracy is:

$$
- \int_0^{p^*} pLdp - \int_{p^*}^1 (1-p)\beta Ldp = - \frac{p^2}{2} \big|_{0}^{p^*} - \beta L(p - \frac{p^2}{2}) \big|_{p^*}^1 \\
= - \frac{\beta L}{2} \left(1 - \frac{\beta}{\beta + 1} \right) \equiv u_c^{p^*}
$$

(3)

Thus, $u_c^{p^*}$ is the utility from enforcement accuracy that the citizen derives in a scenario where police follow the citizen’s preferences. If the police are punitive and are unconstrained by strong criminal procedure protections (CPP), the police will punish suspects whenever $p > p^m$; the citizen’s utility from enforcement accuracy is then:

$$
- \int_0^{p^m} pLdp - \int_{p^m}^1 (1-p)\beta Ldp = - \frac{p^2}{2} \big|_{0}^{p^m} - \beta L(p - \frac{p^2}{2}) \big|_{p^m}^1 \\
= - \frac{\beta L}{2} \left(1 - \frac{\lambda \beta}{\beta + 1} \right) \equiv u_c^{p^m}
$$

(4)

where:

$$
\lambda = \frac{m(\beta + 1)}{(m + \beta + 1)^2} < 1
$$

(7)

Thus, $u_c^{p^m}$ is the utility from enforcement accuracy that the citizen derives in a scenario where punitive police follow their own preferences rather than those of the citizen. It follows from Equations (5)-(7) that:

Remark 2: $m > 0$ implies that $0 < \lambda < 1$ and hence that $u_c^{p^m} < u_c^{p^*}$

The citizen’s utility from enforcement accuracy is thus lower – i.e. more negative - when the agent is punitive (and there exist agency costs of excessive zeal).

13 We are indebted to an anonymous referee for suggesting this point.

13 Crimes are unsolved. An unsolved crime provides no exoneration opportunities, but does offer the opportunity for detecting and apprehending the perpetrator.
To characterize the punishment utility received by a punitive police office, consider first a scenario in which a punitive police officer is unconstrained (i.e. can punish suspects whenever \(p > p^m \)). The utility from enforcement accuracy and from punishment – in combination – can be expressed as:

\[
- \int_0^{p^m} pLdp + \int_{p^m}^1 [pm - (1 - p)\beta]Ldp = u_{\tilde{c}}^m + \int_{p^m}^1 pmLdp
\]

\[
= u_{\tilde{c}}^m + \frac{ml}{2} \left[1 - \frac{\beta^2}{(m + \beta + 1)^2} \right]
\]

The first term in Equation (9) is the utility \(u_{\tilde{c}}^m \) from enforcement accuracy. As highlighted previously, this utility would be experienced by this individual even if she were not part of the police (as long as the counterfactual involves another punitive type being in the police). Thus, the incremental utility from serving in the police (ignoring the wage received) is the punishment utility:

\[
\frac{ml}{2} \left[1 - \frac{\beta^2}{(m + \beta + 1)^2} \right] \equiv v_m^m
\]

Similarly, if a punitive police officer is constrained (e.g. by strong CPP) to only punish suspects when \(p > p^* \), then her punishment utility is:

\[
\int_{p^*}^1 pmLdp = \frac{ml}{2} \left[1 - \frac{\beta^2}{(\beta + 1)^2} \right] \equiv v_m^*
\]

It follows from Equations (10) and (11) that:

Remark 3:

i) If \(m = 0 \), then \(v_m^m = v_m^* = 0 \)

ii) \(m > 0 \) implies that \(v_m^m > v_m^* \)

iii) \(v_m^m \) and \(v_m^* \) are each increasing in \(m \)

Thus, nonpunitive or “neutral” agents (who share the citizen’s punishment preferences) experience no punishment utility. This is because their preferences are defined in relation to those of the citizen, and does not necessarily entail that neutral agents have no punishment preferences at all. \(^{14}\)

When \(m > 0 \), punishment utility is lower when agency costs of excessive zeal are lower. The more punitive a punitive type is, the larger the punishment utility.

\(^{14}\) Thus, “neutral” means neutral compared to the citizen/principal. If the citizen is punishment-preerring to some degree, as is likely, we will still refer to the agent as punishment-neutral if he is punishment-preerring to exactly the same degree (and the punitive type, for example, will then consist of those who are more punishment-preerring than the citizen).
3.2) Sequential Game with Weak Criminal Procedure Protections

This subsection describes and solves a simple sequential game that captures elements of the processes of hiring law enforcement agents and the punishment of suspects. In the model, a representative citizen (the principal) offers a contract to police officers. Potential applicants (with punitive and nonpunitive preferences) then decide whether to apply to join the police. Once hired, the police then encounter suspects (with varying probabilities of guilt p) whom they choose to arrest or not. A court verifies each suspect’s p, but as CPP is weak the court has no power (apart from this verification function) to alter police decisions about punishment.

In the first stage of this game, it is assumed that the contract offered by the citizen consists simply of a wage w, and is not conditioned on performance or other outcome measures. As the standard solution for an agency problem is a contract that creates incentives that align the interests of the agent with the interests of the principal, the assumption that this is impossible or impractical in the context of policing requires some explanation. While theoretically optimal contracts are frequently more complex than the contracts we actually observe in practice, they usually bear some structural similarity. By contrast, the contracts we observe for police are nowhere close to what would be necessary to solve the agency problem. Police are not paid for performance; they are not given bounties or paid a piece-rate for each legitimate search, arrest, or conviction. Their compensation is not tied to the crime rate in their area. Instead, police are paid a wage or salary, creating only very low powered incentives. Even those low powered incentives assume that an officer might be terminated for poor performance, but the evidence suggests that police officers, many of whom are unionized, face only a weak threat of being fired for poor performance (except during their initial probationary period). While police bureaucracies may reward good performance with coveted assignments and promotions, this incentive is sufficiently noisy as to create only weak incentives as well.

The standard explanation for using only weak incentives for police is the danger of fabrication – that if law enforcers were paid by the arrest or conviction, they would “frame” individuals to collect their fee. We interpret Juvenal’s famous query, “who will watch the watchers?,” as reflecting, among other things, the difficulty of preventing such fabrication, given the control that the watchers have over the relevant information.15 There is also the separate,

15 Even if this problem were not inevitable, the fact that American jurisdictions have not paid police in this manner for many decades has allowed legislatures to enact extremely broad laws on the assumption that the police will use
standard concern (Holmstrom and Milgrom, 1991) that high powered incentives tied to one index of job performance (e.g., arrests) will inefficiently cause agents to ignore other less observable areas of job performance (e.g., public safety).\[16\]

Alternatively, the police might affect the crime rate by successful deployments that prevent crime rather than only by arrests after crime occurs. For that reason, one might want the contract to pay police by the amount of crime in their vicinity. There are a variety of problems with this approach, but we will discuss only two. Most obvious is the loose correlation between what an officer or a precinct does and the local crime rate, given the other variables affecting crime: economic and demographic fluctuations, cultural and technological change, and the decisions of government actors in other domains, such as education, housing, and the economy. Even where enforcement is the key explanatory variable, the local police share responsibility with state and federal enforcement agents, as well as each government’s legislative decisions over funding, the federal and state judiciary’s criminal law and procedure decisions, and the federal and local prosecutor. Crime control is a complicated type of “team production,” where the decisions of other agents may swamp the effects of good or bad policing, thus muting the effect of high powered incentives.

The second problem is police manipulation of crime rate data. Where paying police by arrest encourages police to overstate crime so they can make more arrests, paying police by the crime rate encourages them to understate crime, so they appear to being doing better. Even with salaried police, there are media reports (e.g. Bernstein and Isackson, 2014; Rashbaum, 2010) of this kind of manipulation, where police discourage citizens from reporting crimes or recharacterize serious crimes as being less serious (as by understating the value of the object stolen). Perhaps the public could use victim surveys instead of reports, but victim surveys don’t work for many important crimes: murder, corruption, illegal sale of drugs or weapons, etc.

\[16\] Holmstrom and Milgrom (1991) show that in multitask principal-agent settings, it may well be optimal for the principal to use low-powered incentive structures in order to avoid a substitution of effort from measurable to less measurable tasks. One of their examples focuses on schoolteachers, among whom a compensation structure that focuses only on student test scores may induce a neglect of teaching creativity and other nonmeasurable skills.
Perhaps none of these points fully justifies the failure to compensate police in a way that creates high powered incentives for them to act in the principal’s interest. But if so, it is a puzzle that we only observe low powered incentives. A strength of our approach is that it helps to resolve the puzzle. We claim that society manages to attract into policing those who are intrinsically motivated to perform the job, thus rendering external incentives less necessary. The presence of internal incentives makes the trade-off between low and high powered incentives more likely to favor low powered incentives.

In the second stage of the game, individuals observe the contract offered in stage 1, and decide whether to apply to join the police. We normalize the size of the police force to 1 (thus, the wage w may be interpreted as both the wage received by the police officer and as the total wage cost incurred by the principal). We assume that there exists a continuum of punitive types (with $m > 0$) and nonpunitive types (with $m = 0$) in the population, so that each applicant is “small” in relation to the applicant pool. In particular, the decision by an individual to apply or not does not significantly affect the composition (in terms of punitiveness) of the applicant pool. The fraction of punitive types in the population is assumed to be ρ, and the tiebreaking assumption that individuals apply when indifferent is imposed. The reservation wage is assumed to be equal for punitive and nonpunitive types, and is denoted by w^R. The citizen is assumed to be unable to observe whether an applicant is punitive or not, and chooses the police office at random from among those who choose to apply.

The citizen is assumed to have nonpunitive preferences (i.e. $m = 0$), with the following objective function:

$$u_C - w$$

(12)

where u_C is the citizen’s utility from enforcement accuracy and w is the wage paid to the police officer. The normalization of L in Section 3.1 entails that u_C and w are measured in comparable units. In choosing whether or not to apply to join the police, potential applicants seek to maximize:

$$v_m + w$$

(13)

where v_m is the utility from punishment (which is zero for nonpunitive potential applicants).

17 This assumption is made for simplicity and because there is no compelling reason to believe that one or the other type would have a higher reservation wage. It is possible to generalize this assumption by allowing for different reservation ages for each type, but this would not fundamentally alter the results, while making the notation more cumbersome.
It is important to emphasize that while potential applicants experience utility from enforcement accuracy (along with the citizen), this does not play any role in their decision to apply or not. As noted above, utility from enforcement accuracy is a public good, the utility from which does not depend on service as a police officer. Moreover, the assumption above that each applicant is “small” in relation to the applicant pool entails that an individual’s application decision does not change expected police behavior.18 The police officer’s effort in finding suspects is assumed to be exogenous, in order to focus attention on agency costs of excessive zeal. However, if we were to introduce a choice of effort, it is reasonable to expect that punitive officers would exert more effort and this would merely reinforce their value from the perspective of the citizen.

The sequence of decisions can be summarized as follows (see also Figure 1):

1) The citizen chooses a contract consisting of a wage w to offer to the police officer; in so doing, the citizen maximizes Equation (12)

2) Individuals observe the contract offered in stage 1, and decide whether to apply to join the police; in so doing, they maximize Equation (13). The police officer is chosen randomly from among those who choose to apply.

3) The police officer hired in stage 2 encounters a continuum of suspects with varying probability of guilt p. The police officer decides which suspects to arrest.

4) The court observes p for arrested suspects. It has no power to overturn the arrest decision in stage 3; suspects arrested in stage 3 are punished.

Note that the assumption that the court can observe and verify p entails that police cannot credibly fabricate evidence. Under our assumptions, a given suspect’s p is simply exogenous. If fabrication were possible, then a reasonable presumption would be that the court (even under weak CPP) would have the power to overturn the arrest decision in stage 3 and free the suspect. We do not allow fabrication here because that would distract from the central issues that the model is intended to address. The possibility of fabrication would arguably be more relevant in a setting with performance-based compensation for police, a type of contract that we rule out here for the various conceptual and practical reasons discussed earlier. In reality, fabrication may remain a possibility even in the absence of performance-based compensation. However, some degree of

18 For instance, in an equilibrium in which only punitive types apply, the counterfactual scenario for any individual punitive applicant is that if he were not to apply then some other punitive individual would be the police officer; in an equilibrium in which both types apply, the counterfactual scenario for any individual punitive applicant is that if he were not to apply, the probability of the police officer being punitive remains p.\normalsize
verifiability by courts of police allegations against suspects is required for criminal procedure provisions to have any impact at all.\(^{19}\) Moreover, the possibility of fabrication may generally be expected to make intrinsically motivated punitive types more (rather than less) attractive as police officers, as they would be more intrinsically motivated to identify the guilty rather than to fabricate evidence against the innocent.

The exogenous nature of \(p\) also abstracts from the effort involved in finding evidence against suspects. In this respect, we depart from the framework of Aghion and Tirole (1997), which models asymmetric information between the principal and agent and analyzes the agent’s investment of effort in acquiring information. This simplification enables us to focus on our paper’s central issues, which relate to the choice of punishment given a known probability of guilt and to the role of intrinsic motivation. However, if we were to introduce a choice of effort by the officer in learning \(p\),\(^{20}\) then it would be reasonable to expect that punitive officers (who have an intrinsic reason to identify the guilty) would exert more effort along this dimension than would nonpunitive officers. This would make the employment of punitive officers even more attractive than under our assumption of an exogenous \(p\), and in that sense would reinforce the basic conclusion that the citizen will in many circumstances wish to employ punitive officers notwithstanding the divergence in preferences over punishment.

The game described above can be solved using backwards induction. The final stage is quite trivial, as the court has no significant power by assumption. Note, however, that its verification of \(p\) ensures that the police cannot fabricate evidence. In the third stage, a punitive officer will arrest iff \(p > p^m\) (as derived earlier – see Equation (2)), while a nonpunitive officer will arrest iff \(p > p^*\) (as derived earlier – see Equation (1)). In the second stage, potential applicants will compare the sum of the wage and their punishment utility (if any) with their reservation wage

\(^{19}\) If \(p\) were not verifiable by the court, then the trial stage involves a game of asymmetric information between the officer and the court. A punitive officer encountering a suspect with \(p\) between \(p^m\) and \(p^*\) may seek to falsely testify to make it appear that the suspect’s \(p\) exceeds \(p^*\). Anticipating such behavior, the court may play a mixed strategy that involves acquitting some fraction of suspects with \(p\) ostensibly above \(p^*\). A nonpunitive officer would have no incentive to lie in this way. Thus, the nonverifiability of \(p\) would tend to reduce the attractiveness of punitive types from the perspective of the citizen.

\(^{20}\) Note that in addition to the police officer’s effort in learning \(p\), the court may also expend effort and cost at the trial stage in determining the probability of guilt. In doing so, the court may have a cost advantage in that it must expend this effort only for those cases where there is an arrest (and no plea bargain), whereas the police must do so for all potential suspects to determine which of them to arrest (by analogy with Shavell’s (2013) framework with respect to the enforcement differences between regulation and the negligence rule).
w^R in deciding whether to apply. A punitive type will apply iff $w \geq w^R - v^{p^m}_m$, while a nonpunitive type will apply iff $w \geq w^R$.

In the first stage, the citizen has one of two undominated strategies, depending on the values of the relevant parameters (as specified below). The first (strategy I) is to offer a wage $w = w^R - v^{p^m}_m$. This induces only punitive types to apply. The police officer who is randomly chosen is therefore necessarily a punitive type, and uses a $p > p^m$ cutoff for punishing suspects. This leads to a payoff for the citizen of:

$$- w^R + v^{p^m}_m + u^p_c$$

(14)

The second strategy (Strategy II) is to offer a wage $w = w^R$. This induces both punitive and nonpunitive types to apply. Thus, the randomly chosen police officer is punitive with probability ρ (and uses a $p > p^m$ cutoff for punishing suspects) and nonpunitive with probability $1 - \rho$ (and uses a $p > p^*$ cutoff for punishing suspects). This leads to an expected payoff for the citizen of:

$$- w^R + (1 - \rho)u^{p^*}_c + \rho u^{p^m}_c$$

(15)

It is important to note that in Strategy II, the same wage (w^R) is paid to the police officer, regardless of whether the randomly-chosen officer who is hired happens to punitive or nonpunitive. Of course, while the officer’s type is unobservable ex ante, it can eventually be inferred ex post from her arrest behavior. However, we assume that the wage offer made in stage I is credible and binding on the citizen, and is not revised ex post. It follows that if a punitive officer is chosen under Strategy II, she derives rents in the sense that the wage plus her punishment utility strictly exceeds her reservation wage; this informational rent arises because punitiveness is unobservable to the citizen.

Whether Strategy I is better than Strategy II for the citizen depends on the following condition:

Condition 1: $(1 - \rho) < \frac{v^{p^m}_m}{u^{p^*}_c - u^{p^m}_c}$

Intuitively, the left-hand-side represents the fraction of nonpunitive types in the applicant pool. The right-hand-side represents the ratio of the punitive type’s punishment utility (when unconstrained by strong CPP) to the loss of utility from enforcement accuracy caused by (unconstrained) punitive police. Note that Condition 1 is more likely to be satisfied when there is a larger fraction of punitive types in the population. This is evident when Condition 1 is expressed purely in terms of primitive parameters, as follows:
\[(m + \beta + 1)^2 \left(m - \frac{(1-\rho)\beta^2}{\beta+1} \right) - \rho m \beta^2 > 0 \]

(16)

The derivative of the LHS of Equation (16) with respect to \(\rho \) can be expressed as:

\[
\frac{\partial (LHS)}{\partial \rho} = \frac{m^2}{\beta+1} + m + \beta + 1 > 0
\]

(17)

Thus, an increase in the fraction of punitive types in the population unambiguously makes Condition 1 more likely to hold. However, the impact of other parameters on whether Condition 1 is satisfied is ambiguous. For example, a higher \(m \) increases the wage savings that the citizen can achieve by hiring a punitive officer, but it also increases the policy distortion (i.e. the divergence of preferences between the citizen and the officer) and so reduces the citizen’s utility from enforcement accuracy.

When Condition 1 is satisfied, the citizen will choose Strategy I; otherwise, the citizen will choose Strategy II. The equilibrium outcomes of the game can thus be characterized as follows:

Proposition 1: If Condition 1 holds, then the equilibrium outcome is:

1) The citizen sets \(w = w_R - v^m_m \)
2) Only punitive types apply to join the police
3) The police officer arrests suspects iff \(p > p^m \)
4) The court verifies \(p \); suspects with \(p > p^m \) are punished

Proof: Suppose that Condition 1 holds, and consider any wage \(w > w_R - v^m_m \) and \(w < w_R \). For any wage in this range, it is clear that nonpunitive types will not apply (as their payoff is \(w \) and so their reservation wage \(w_R \) exceeds the payoff from joining the police). Thus, the police officer will be punitive and offering the higher wage merely creates rents for the punitive officer, with no change in police behavior. Now consider \(w = w_R \). This induces both punitive and nonpunitive types to apply, but the citizen is worse off with this outcome than with Strategy I. Rearranging Condition 1 yields:

\[v^p_m + u^p_c > (1-\rho)u^* + \rho u^p_c \]

By comparing this expression to Equations (14) and (15), it is clear that the citizen is worse off with this outcome than with Strategy I. Any wage \(w > w_R \) is clearly dominated. Thus, it follows that under Condition 1 the citizen’s optimal strategy is to set \(w = w_R - v^m_m \). The other results follow straightforwardly from the backwards induction argument in the text.

Proposition 2: If Condition 1 does not hold, then the equilibrium outcome is:

1) The citizen sets \(w = w_R \)
2) Both punitive and nonpunitive types apply to join the police
3) If the randomly chosen police officer is punitive, she arrests suspects iff $p > p^m$; if the randomly chosen police officer is non-punitive, she arrests suspects iff $p > p^\ast$.

4) The court verifies p. Suspects with $p > p^m$ are punished if the randomly chosen police officer is punitive; Suspects with $p > p^\ast$ are punished if the randomly chosen police officer is non-punitive.

Proof: Suppose that Condition 1 does not hold, and that the citizen were to reduce the wage slightly below w^R. Then, the non-punitive types will not apply, and the police officer will be punitive. Given that Condition 1 does not hold, it follows from Equations (14)-(17) that the citizen is worse off than by setting $w = w^R$. Any wage $w > w^R$ is clearly dominated. Thus, it follows that when Condition 1 does not hold, the citizen’s optimal strategy is to set $w = w^R$. The other results follow straightforwardly from the backwards induction argument in the text.

Thus, the simple game that we have specified and analyzed in the subsection has two equilibrium outcomes, depending on parameter values (the equilibrium is unique, however, for any given set of parameter values). When Condition 1 holds, there is a self-selection equilibrium, in which the citizen sets a relatively low wage and attracts punitive types into the police. The savings in wage costs outweigh the reduced utility from enforcement accuracy (under Condition 1). When Condition 1 does not hold, the equilibrium involves both types being represented in the police, with higher wage costs for the citizen, but a greater alignment of preferences between the principal and the agent and lower agency costs of excessive zeal.

3.3) Sequential Game with Strong Criminal Procedure Protections

In this subsection, we modify the game in Section 3.2 by adding strong criminal procedure protections, specifically an expanded role for the court in determining which suspects are to be punished. The first three stages of the game are identical to those in the previous model. In the fourth stage, the court observes p for arrested suspects (as before). Now, however, it decides which suspects will be punished; for example, it can decide whether to convict or acquit the suspect. Admittedly, this is a highly stylized and simplified representation of criminal procedure protections that ignores many nuances and complexities. However, it serves to capture in very simple form the idea of providing enhanced procedural rights for suspects. We solve this modified game (depicted in Figure 2) by backwards induction and characterize the equilibrium below.

The central assumption of this modified game is that the court shares the preferences of the citizen. As this assumption plays a key role, it is worth explaining in detail. As argued in the
previous subsection, the citizen in our framework faces a tradeoff between the agency costs of excessive police zeal and the wage costs of hiring less zealous police. This dilemma can be made less sharp if the public can establish institutional structures that entail other agents “policing” the excessive zeal of the police. This requires, of course, that the public has the ability to select agents who have punishment preferences closer to their own than are those of the police. The approach on which we focus is to provide stronger procedural protections for suspects, thereby in effect empowering courts to play a greater role in deciding whether suspects are punished.

In order to achieve this, it is crucial that courts have preferences that are closer to those of the representative citizen than are those of punitive police. This may be arguably true of judges who are directly elected, as judicial elections would be expected to produce judges with punishment preferences identical to those of the public. A similar outcome may result from judicial appointments. The prestige of being a judge is so high, especially in the highest appellate courts that monitor lower courts, that few lawyers turn down the opportunity, which leaves little opportunity for self-selection. Moreover, most judges are generalists, so it is unlikely that their preferences in the area of criminal law will align precisely with those of police. All of this is consistent with the common observation that judges are less pro-prosecution than are police, which makes plausible our assumption that judges are closer to being punishment-neutral, i.e., the same as the public. A second institution is the jury. Suppose either that the legal system coerces a broad cross-section of citizens to serve as jurors or that civic virtue dominates as the motivation for jury service. In either case, the jury might be punishment-neutral, that is, its members might on average have the same punishment preferences as the median member of the public.²¹

In the final stage of the game, a court that shares the citizen’s punishment preferences will choose to punish suspects iff \(p > p^* \) (see Equation (1) above). In the third stage, the decisions of the police officer regarding arrests will now be influenced by the anticipation of the court’s choice – i.e. will be made in the shadow of the court’s preferences. We assume that the police officer

²¹ Few cases go to trial, which may seem to reduce the relevance of the preferences of judges and juries. However, it is reasonable to assume that plea bargains are made in the shadow of the outcomes that would result at trial. Thus, police behavior is likely to reflect the anticipated decisions of the court, even if the probability of any given case going to trial is very small.

In addition, even if courts (i.e. judges and juries) are on average as punitive as the police, the former may still exercise a restraining influence on the latter as long as there is heterogeneity among judges and among juries. On those occasions when the court is less punitive than the police, it will constrain the set of suspects who are punished. On the occasions when the court is more punitive than the police, the court cannot easily cause the police to arrest additional suspects, and so the decisions of the (less punitive) police as to which suspects to arrest will stand. Note that this scenario is outside the scope of our model, in which there is no heterogeneity among judges or among juries.
faces a small cost of arresting a suspect who is subsequently acquitted. Equivalently, we could assume this cost is zero, but impose a tiebreaking assumption that the officer does not arrest if indifferent.22 Then, the police office (whether punitive or not) will arrest iff $p > p^*$. In the second stage, a punitive type (anticipating that she will be constrained by strong CPP if she joins the police) will apply iff $w \geq w^R - v_{p^*}^m$ (i.e. the punitive type now requires a higher wage in order to apply). As before, a nonpunitive type will apply iff $w \geq w^R$.

In the first stage of the game, the citizen now has only one undominated strategy, which is to offer a wage $w = w^R - v_{p^*}^m$. Intuitively, there is no longer any value to attracting nonpunitive types into policing by offering a higher wage. Because police are constrained by strong CPP via the court, police behavior is identical under our assumptions whether the police officer is punitive or nonpunitive. The wage $w = w^R - v_{p^*}^m$ induces only punitive types to apply, and leads to a payoff for the citizen of:

$$-w^R + v_{p^*}^m + u_c^p$$

Thus, the equilibrium can be characterized as follows:

\textbf{Proposition 3:} With strong CPP, the equilibrium outcome is:

1) The citizen sets $w = w^R - v_{p^*}^m$
2) Only punitive types apply to join the police
3) The police officer arrests suspects iff $p > p^*$
4) The court verifies p; suspects with $p > p^*$ are punished

\textbf{Proof:} Consider any wage $w > w^R - v_{p^*}^m$ and $w < w^R$. For any wage in this range, it is clear that nonpunitive types will not apply (as their payoff is w and so their reservation wage w^R exceeds the payoff from joining the police). Thus, the police officer will be punitive and offering the higher wage merely creates rents for the punitive officer, with no change in police behavior. Now consider $w = w^R$. This induces both punitive and nonpunitive types to apply, but even if the police officer ends up being nonpunitive, police behavior is identical as any officer will arrest suspects iff $p > p^*$ (anticipating the court’s choice). Any wage $w > w^R$ is clearly dominated. Thus, it follows that the citizen’s optimal strategy is to set $w = w^R - v_{p^*}^m$. The other results follow straightforwardly from the backwards induction argument in the text.

22 It is in theory possible that this cost may be negative, in the sense that the officer derives a benefit from arresting a suspect who is expected to be freed, perhaps because the process of arrest itself serves as a form of punishment. This possibility could be incorporated by assuming two different kinds of punishment – informal punishment (including the arrest itself) imposed by the police, and formal punishment imposed by the court. Strong CPP would affect the latter but not necessarily the former (although requiring warrants for arrests and imposing constraints on excessive force may affect the former). This extended model would lead to substantially similar conclusions, although the gains to the citizen from using strong CPP would be somewhat reduced.
Thus, when strong CPP for suspects are added to our simple game, the only possible equilibrium outcome involves self-selection by punitive types into the police force. Intuitively, when procedural protections limit the agency costs of excessive zeal, there is no reason for the citizen to seek to attract nonpunitive police through a higher wage. Of course, this is a simplification; in reality, there would be multiple types of agency costs of excessive zeal, and some such costs – e.g. the excessive use of force against clearly guilty suspects – may not be fully constrained by the court. Nonetheless, strong CPP at least reduces the value of attracting nonpunitive types. The wage in this equilibrium is higher than in the self-selection equilibrium in Section 3.2, because strong criminal procedure protections limit punishment opportunities. However, given the equilibrium wage, the job remains more attractive to punitive than to nonpunitive types as long as punishment opportunities continue to exist.

3.4) The Choice between Weak and Strong Criminal Procedure Protections

The two previous subsections have characterized the equilibrium outcomes under both weak and strong CPP. The question that arises naturally from this is what type of CPP the citizen would prefer. Suppose that we envisage a scenario in which the citizen chooses the rules of criminal procedure at a prior “constitutional” stage of decisionmaking, anticipating the equilibrium outcomes that would occur in the wake of this choice. Then, holding everything else equal, the citizen will choose strong CPP under the following circumstances:

Proposition 4: If the representative citizen is able to choose the strength of CPP, she will impose strong CPP iff:

i) Condition 1 holds and:

\[v_m^{p^*} + u_c^{p^*} > v_m^p + u_c^p \]

or,

ii) Condition 1 does not hold

Proof: i) If Condition 1 holds, then under weak CPP the citizen will choose Strategy I and obtain the payoff in Equation (14). Under strong CPP, the citizen will obtain the payoff in Equation (18). Thus, strong CPP will be chosen when:

\[v_m^{p^*} + u_c^{p^*} > v_m^p + u_c^p \]
ii) If Condition 1 does not hold, then under weak CPP the citizen will choose Strategy II and obtain the payoff in Equation (15). Strong CPP will thus be preferred when:

$$v_m^{p^*} > \rho \left(u_c^{p_m^m} - u_c^{p^*} \right)$$

This is always satisfied as the RHS < 0 and the punishment utility $v_m^{p^*}$ is positive by assumption. Thus, strong CPP is always optimal when Condition 1 does not hold.

Recall that, as discussed earlier, Condition 1 is more likely to be satisfied when there is a larger fraction of punitive types in the population (or more specifically, the pool of applicants). The inequality in Proposition 4(i) compares a punitive officer’s loss of punishment utility from strong CPP (i.e. $v_m^{p_m^m} - v_m^{p^*}$) with the citizen’s gain in utility from enforcement accuracy (i.e. $u_c^{p^*} - u_c^{p_m^m}$). This can be viewed as being analogous to the efficiency condition that would be derived from a pure utilitarian social welfare function. The intuition underlying Proposition 4 can perhaps be most easily understood by considering the circumstances in which weak CPP will be preferred. Weak CPP is optimal from the citizen’s perspective only if Condition 1 holds and the inequality in Proposition 4(i) does not hold. The former will be true when the proportion of punitive types in the population is relatively large. The latter entails that it is jointly efficient for the officer and the citizen to deviate from punishing only suspects with p exceeding p^*: the gains in punishment utility to the officer exceed the citizen’s losses from enforcement errors. When both of these conditions hold, weak CPP will be optimal. In all other circumstances, the citizen will choose strong CPP.

4) Discussion

As discussed previously, our framework derives the basic structure of the criminal justice system – the separation of judicial and executive enforcement powers, and the judiciary’s pro-defendant rules of criminal procedure – from the agency problem in law enforcement. In this section, we identify other implications of our model of intrinsically motivated police. Earlier, we noted that intrinsic motivation helps to explain the fact that modern governments usually choose to motivate law enforcers extrinsically with only low powered incentives. Internal incentives make external incentives less necessary, so the trade-off (given the risk that strong external incentives cause police to fabricate evidence and divert police from unmeasured tasks not rewarded with high powered incentives) favors weaker external incentives. Our model also provides an answer to the related question of why (given these low powered incentives) there is not more shirking among police - those who select into policing are intrinsically motivated to perform the job.
Because the state uses only low-powered incentives to motivate most of its bureaucrats, Wilson (1989, p. 56) noted that it “is surprising that bureaucrats work at all.” With police however, a variety of factors could reconcile economic theory with observed behavior: (1) some external employment incentives (e.g., the opportunity for promotion and attractive assignments) motivate some work; (2) group norm enforcement might motivate work if police precincts have pro-work norms; (3) police officers might work to gather evidence of crime merely to put themselves in a position to receive bribes from the guilty for not arresting them; and (4) some evidence suggests that some police officers actually do shirk quite a bit. (e.g., Mastrofski et al. 1994; Walsh 1986).

While some police are corrupt and some shirk, the evidence suggests that many police officers do not take bribes and work more than they shirk (e.g., Brehm & Gates 1997), making about 14 million arrests per year (FBI, 2006). Some econometric analysis supports the idea that adding officers to a police force decreases crime (e.g. Levitt, 2002; Vollaard and Hamed, 2012), which seems unlikely without effort. Nonetheless, these facts do not necessarily demonstrate that police work beyond the level explained by weak external incentives. What is puzzling is the fact that police perform their duties even in situations of great personal risk.23 Even if low-powered incentives are sufficient to induce law enforcement officers to make millions of stops, searches, and arrests each year, it remains puzzling why officers would endanger their lives.24 We propose that self-selection produces a police force with many intrinsically motivated individuals. Low monetary wages plus the opportunity to punish wrongdoers ensures that those attracted to policing are among those most strongly motivated to punish. The degree of shirking is far less than it would

23 In 2012, for example, 48 law enforcement officers were feloniously killed in the line of duty, another 47 were accidentally killed, and nearly 53,000 were assaulted (of which, over a quarter sustained injuries). See FBI Uniform Crime Reports, Law Enforcement Officers Killed and Assaulted 2012, at http://www.fbi.gov/about-us/cjis/ucr/leoka/2009 (last accessed 30 August 2015). The largest category of those assaulted – about one-third – were responding to a disturbance call, such as a bar fight or domestic quarrel. Almost half of those killed by accident are in car crashes, many resulting from high speed police chases of suspects. See NHTSA, Characteristics of Law Enforcement Officers’ Fatalities in Motor Vehicle Crashes, January 2011, at http://www.nrd.nhtsa.dot.gov/Pubs/811411.pdf (last accessed 30 August 2015). If police are not punitive, or otherwise intrinsically motivated, it seems that they would entirely avoid these predictably dangerous situations.

24 One might posit that group camaraderie and norms of professionalism explain these effort levels. But those forces merely imply that individual officers from a unit will tend to work or shirk at equal rates. The same forces could cause officers to increase shirking, allowing the group to gain the maximum benefit from the job. So we need a more basic reason why policing norms encourage work as much as they do, given only low-powered incentives. We do not discount the importance of organizational culture. Although it does not ultimately explain the choice between a norm of working and a norm of shirking, informal sanctions can turn a small bias into a large one. If most police are punitive, they may make life hard for police who are of other types. So even a small initial tendency towards self-selection by punitive types can become reinforced to the point of becoming dominant.
be in the absence of the self-selection of intrinsically motivated individuals.25 Thus, our agency model of policing captures some essential features of law enforcement that are otherwise missing from the literature.

Our framework also has implications for bribery. The conventional recommendation is to pay more (Becker and Stigler, 1974, p. 6). They specifically recommend an “entrance fee” – that upon taking an enforcement job, a person posts a bond that will be paid back when the person leaves the job, if they were not corrupt. While such bonds are rarely posted in this explicit form (perhaps due to wealth constraints among potential enforcers), pensions and other forms of deferred compensation may play a similar role in inducing honesty and effort.26 However, the existence of intrinsic motivation can complement such mechanisms, and also suggests that in some circumstances the conventional prescription of paying a higher wage may increase bribery. Low pay disproportionately attracts those with intrinsic motivation, who are harder to bribe. The preferences make the person’s compensation depend in part on doing his job, even if failing to do the job is not detected.27

The primary aim of our paper is to provide a new conceptual framework, rather than to derive testable hypotheses. Some of the underlying determinants of whether strong CPP will be chosen – such as the proportion of punitive types in the applicant pool – are inherently difficult to measure. However, our framework does give rise to some potentially testable implications. For instance, if Condition 1 holds, the self-selection of punitive police implies that the police will on average have more intense punitive preferences, not only compared to citizens (for which there is some experimental evidence, as discussed in Section 2) but also compared to other government

25 The model does not explicitly include a choice of effort (for instance, in finding suspects or in investing in determining the probability of guilt p). However, a straightforward extension of the model to encompass this choice would be expected to yield the result that under reasonable conditions the punitive type will exert greater effort, as this generates more punishment opportunities. Thus, our general framework would predict less shirking than does the standard assumption of ordinary consumer preferences, which we contend is more consistent with the qualitative evidence of police behavior.

26 This point is analogous in some respects to Lazear’s (1981) explanation of rising age-earnings profiles for workers. But as it is difficult to terminate poorly performing police, it is difficult to terminate the pension rights of police. See, e.g., People ex rel. Madigan v. Burge, 18 N.E.3d 14 (Illinois 2014) (dismissing on jurisdictional grounds a state attorney general lawsuit seeking to terminate pension of retired police officer convicted of perjury and obstruction of justice for lying about his use of torture on suspects interrogated in police custody).

27 It might be thought that bribes extracted from the guilty represent a form of informal punishment that would be valued by punitive officers. However, the nature of bribery entails that the bribe must necessarily be less burdensome to the offender than would the formal punishment for the offense. Wealth constraints would make some bribes far lower than the cost the offender incurs from incarceration imposed after conviction. This implies that bribery would be less attractive (relative to arresting suspects) to punitive police than they would be to nonpunitive police.
employees (including judges). Under the same conditions, we would also predict that the wages of police would be lower than those of other workers with comparable skills. Moreover, across jurisdictions, we would expect that those jurisdictions in which police wages are lower, other things equal, would also have stronger CPP relative to jurisdictions in which police wages are higher. As far as we are aware, these types of hypotheses have not been empirically tested.

In a related paper (McAdams, Dharmapala, and Garoupa, 2015), we offer a brief informal account of our model and explore the implications of punitive police for understanding doctrinal distinctions in US Fourth Amendment jurisprudence. For example, the Supreme Court has sometimes demanded more justification for searches by police officers than for the same searches conducted by government agents other than police. This distinction is a puzzle because the text of the Fourth Amendment does not distinguish police and because the social value of police searches aimed at crime control is often higher than the value of non-police searches aimed at other purposes. We explain the puzzle using the idea that police are likely to be more punitive than most other government agents, and therefore to have lower thresholds of doubt for justifying searches, requiring greater judicial scrutiny. We also explain the related puzzle that the Supreme Court is more permissive of police searches motivated by purposes other than law enforcement, as where the police engage in “community caretaking” by entering a home believing someone inside requires emergency medical assistance. Punitive preferences drive police to be overzealous of the punitive parts of the job only; there is no necessary divergence between in the preferences of police and citizens regarding the performance of the non-punitive aspects of the job. However, this related paper does not develop a formal analysis of the agency problem, while the current paper does not focus on explaining specific US legal doctrines.

5) Conclusion

Agency problems are pervasive in criminal law enforcement, yet there has been little analysis of the principal-agent issues in law enforcement in the law and economics literature. In this paper, we begin the task of filling this gap in the scholarly literature. We examine self-selection into law enforcement jobs by intrinsically motivated agents. Various intrinsic motivations might be prevalent in this context, but we focus on the lessons of the experimental literature on altruistic punishment (while believing our framework could also accommodate other motives, e.g., a taste for authoritarianism or violence). Our model identifies circumstances in which “punitive”
individuals (with stronger-than-average punishment preferences) will self-select into police jobs that offer the opportunity to punish (or facilitate the punishment of) wrongdoers. We identify both costs and benefits of this type of intrinsic motivation. “Punitive” agents will accept a lower salary and be less likely to shirk, but create agency costs of excessive zeal in searching, seizing, and punishing suspects. Under a reasonable set of assumptions, the public chooses to hire punitive police agents, while submitting them to monitoring by other agents (such as the judiciary) with average punishment preferences. Thus, the public separates the powers of criminal enforcement into two branches of government and creates criminal procedure protections for the accused. Our analysis sheds new light on the enduring question: *Quis custodiet ipsos custodes?*

References

Friebel, Guido, Michael Kosfeld, and Gerd Thielmann. 2014. Sorting of Motivated Agents: Evidence from Applicants to the German Police, Goethe University Frankfurt mimeo.

Polinsky, A. Mitchell, and Steven Shavell. 1993. Should employees be subject to fines and
imprisonment given the existence of corporate liability? *International Review of Law and
Economics* 13(3): 239.

Polinsky, A. Mitchell, and Steven Shavell. 2001. Corruption and Optimal Law Enforcement,

97: 180-196.

Rasmusen, Eric, Manu RagHAV, and Mark Ramseyer. 2009. Convictions versus Conviction

Feb. 6, 2010, last accessed 6/2/13 at

Richman, Daniel. 2003. Prosecutors and Their Agents, Agents and Their Prosecutors, *Columbia

Cambridge: Cambridge University Press.

Shavell, S. 2013. A Fundamental Enforcement Cost Advantage of the Negligence Rule over

York: John Wiley and Sons Inc.

549-550.

Table 1: The Citizen’s Preferences

<table>
<thead>
<tr>
<th>Suspect is:</th>
<th>Probability</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guilty</td>
<td>p</td>
<td>0</td>
</tr>
<tr>
<td>Not</td>
<td>$1 - p$</td>
<td>$-\beta L$</td>
</tr>
</tbody>
</table>

Table 2: The Preferences of Punitive Agents

<table>
<thead>
<tr>
<th>Suspect is:</th>
<th>Probability</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guilty</td>
<td>p</td>
<td>mL</td>
</tr>
</tbody>
</table>
| Not | $1 - p$ | $-\beta L$ | 0

Figure 1: Sequential Model with Weak CPP

- Citizen offers a contract with wage w
- Punitive and nonpunitive types decide whether to apply
- Police officer encounters suspects with probability of guilt p, and decides which suspects to arrest
- Court verifies p; arrested suspects are punished

Figure 2: Sequential Model with Strong CPP

- Citizen offers a contract with wage w
- Punitive and nonpunitive types decide whether to apply
- Police officer encounters suspects with probability of guilt p, and decides which suspects to arrest
- Court verifies p, and decides which suspects to convict; convicted suspects are punished